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Abstract

The emerging field of modern biosciences and biotechnologies ask for appropriate and refined methods
from applied mathematics. Modeling and prediction of gene-expression patterns have an important
place here. In our paper, we deepen the analytical understanding and the algorithmical treatment
by including affine terms on the right-hand side of the nonlinear differential equations and using
Runge-Kutta (e.g., Heun) rather than Euler discretization. In the center of our research, there is
the investigation of stability which we motivate in terms of biology and medicine, and detect by
modified Brayton and Tong algorithm applied to the corresponding time-discrete dynamics in an
extended space. This paper pays special attention to the motivating and analytical preparations of
the combinatorial algorithm which based on the observation of polyhedra.
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Dynamical System, Runge-Kutta Discretization, Stability.

1 Introduction

Stability has a positive meaning in science and technology [10]; in biological sciences and technologies,
and in medicine, it may has meaning of a disease coming to a rest (recovering), etc.. On the other
hand, stability could also negatively be interpreted: a biosystem which is stable in the sense of
insensitivity or lack of flexibility to changes in the environment is threatened in its existence. Finally,
if a model behaves unstable, or unbounded, this contradicts with natural and technical conditions such
as expression levels of genes lying in a certain bounded interval, then this instability can lead us to
reject the hypothesis given by our mathematical model. This paper is a contribution to mathematical
stability analysis applied to gene expression patterns, and based on an improved modeling compared
with former approaches [7, 8, 22].

The process by which gene information is converted for producing cell structures and cell functions is
called gene (or protein) expression. There are two main process events: transcription and translation.
After them, steps like folding, post-translational modification and targeting occur up to the protein
product, we leave these details to [15]. Analysis of mRNA being an exact copy of the DNA coding
regions can be well used to explore the process in coding regions of DNA. More importantly, the
measure of gene expression can be determined from the genomic analysis at the mRNA level [18].
Both genomic and environmental factors affect the expression levels. For example, environmental
effects including stress, light, temperature and other signals cause some changes in hormones and
in enzymatic reactions which influence the gene expression level. Because of this, mRNA analysis
informs us not only about genetic aspects on an organism but also about the dynamical changes in
environment of that organism. For most genes, protein levels are defined by steady state mRNA levels
[20]. Thus, quantitative expressions at mRNA level provide important clues about the underlying
dynamics. Peculiar changes in monitoring mRNA levels generally refer to drug treatment, shocks,
disease or metabolic shifts.

1.1 Microarray Technology

The array-based microarray technology monitors thousands of different RN A molecules simultaneously
revealing their expression patterns and perturbed subsequent cellular pathways. One of the most
frequently used microarray applications [3] is to compare gene expression levels of the same cell type
like healthy cell and diseased cell under two different conditions. Such application can give vital
information on the reasons of diseases. Expression analysis is the recent main large-scale application



of microarrays, it is followed by DNA variation on a genome-wide scale [4]. Both applications share
similar requirements but differ in some crucial aspects that have resulted in two different types of
microarrays.

1.2 Evaluating the Expression Data

The expression values for large numbers of genes are quickly monitored by microarray experiments.
One of the goals researchers have in mind is to clarify the precise connections of the genetic network:
mathematically speaking a graph consisting of nodes representing genes and with the edges and their
weights representing the influence which the genes mutually exercise. Here, the nodes themselves can
also be viewed as a function obtained by combining basic inputs. For each gene it is aimed to find and
to predict which and how much other genes influence it. Different mathematical methods have been
developed for construction and analyzing such networks. In this study, we refine the model derived
from differential equations by adding shift terms and by extending space. These dynamical systems
will be characterized by matrices which are encoding our genetic networks [19]

2 Modeling Gene Networks with Ordinary Differential
Equations

Easily accessible data through databases make modeling techniques popular. Based on these experi-
mental data it is aimed to make reliable future predictions and simulations and to find the correlation
between genes.

There are several modeling approaches, namely, Bayesian networks, Boolean networks, models derived
from ordinary or piece-wise linear differential equations, hybrid systems modeling and etc.. All
these methods have both advantages and disadvantages [20, 30] concerning goodness of data fit,
computation time, capturing dynamics well, stability and other qualitative or quantitative aspects.

Differential equations are one of the most widely used modeling formalisms in mathematical biology.
First of all, their more detailed representation of regulatory interactions can provide a more accurate
understanding of the physical systems. Secondly, there is a large body of dynamical systems theory
that can be used to analyze such models. Thirdly, concerning that biological systems evolve in
continuous time, we prefer to use the systems of differential equations.

A differential relation between variables of gene networks is generally represented in the form of
ordinary differential equations (ODEs)

where E = (En, E», ...,En)T is the vector of positive concentrations of proteins, mRNAs, or small
components, f; : R™ — R are nonlinear functions and n being the number of genes.

A first differential equation or dynamical system model consisting of mRNA and protein concentra-
tions was proposed by Chen, He and Church [5] in the form of E = ME, where M is a constant
matrix and the vector E comprises the expression level of individual genes. Later on, De Hoon and
Imoto [12] used this linear model on mRNA data of Bacillus subtilis to estimate M with maximum
likelihood estimation method. In 2001, Sakamoto and Iba [17] proposed the more flexible model

E; = fi(Er, Es, ..., E,),

with f; being functions of E = (E1, Eq, ..., En)T determined by genetic programming and least-squares
methods.

The models described above were studied and improved by Gebert, Ldtsch, Pickl, Weber and
Wiinschiers with many ideas. In [8], they regarded the model F = M(E)E in which the matrix M,
not usually a constant matrix, depends on E. In the same study, for the least-squares optimization
problem on finding an approximate model, the solution space is restricted by assuming that number
of regulating factors for each gene is bounded.

3 The State of the Art

Let the n-column vector E = E(t) consist of gene expression patterns at different times ¢t. We denote
the given finite set of experimental results as Ey, E1, ..., Fj—1, where each F,, € R" corresponds to
the gene profile taken at time #,, and the sample times are increasing.



Gebert et al. [9] refined the time-continuous model (CE) first formulated by Chen et al. by taking into
account that the interaction between variables is nonlinear but the number of associated regulating
influences is bounded. This model was represented by the multiplicative nonlinear form

(c§) FE=M(E)E.

Here, we refer to corresponding initial values E(t9) = Ep. Note that (CE) is homogeneous and
autonomous (i.e., the right hand-side depends on the states E but not on time t). This implies that
trajectories do not cross themselves. The matrix M (F) is defined component-wise by a family of any
class of functions including unknown parameters. For example, for a (2 x 1)-vector E = (Fy, E»)7,
the matrix M(E) could be

Mal,ag,a3,a4 =
as,a6,a7,a8

a1E} + a2F1Ey asEzcos(E1) + as
as COS(EQ) + asE1 a7E12 + asEs :

We note that the polynomial, trigonometric, but otherwise also exponential, etc., entries represent the
growth or other kinds of changes in the concentrations. In this example, there are eight parameters
in total.

Now, two different stages of problem come into consideration concerning the parametrized entries
of the matrices M (FE). Firstly, the optimization problem of discrete (least-squares) approximation

which can be written as
-1

minimize Y || Ma (Ex)Ex — Ex||.
[e3
k=0
Here, the least-squares methods of linear and nonlinear regression are used to estimate the vector
a of a first part of the parameters to fit the set of given experimental data and to characterize
the statistical properties of estimates. Secondly, we investigate which components of the remaining
parameter vector 3 produce a stable, which ones an unstable influence on the dynamics. For a closer
presentation of this two-stage problem from parametric optimization, we refer to [8, 14].

4 Model with Quadratic Polynomials

An extension to (CE) was considered by Yilmaz [22] and Yilmaz et al. by proposing
E = F(E),

where F = (Fi, F», ...,F)T is a tuple of functions depending on E € R™. More specifically, for
representing the influence of gene i to gene j the authors considered the quadratic (constant, lin-
ear) functions f;;(x) = a;;x® + bjix + c;i, where 2 = F; denotes the concentration of gene; and
aji,b54,¢5: € R. Please note that in comparison to the model (CE) with its multiplicative form M(E),
now the vector C € R™ coming from the absolute effects c¢;; means a parametrical enrichment, an
additive ”shift” on the right-hand side. In [22], the least-squares approximation errors of linear and
nonlinear, in fact quadratic, models are compared.

5 Our Generalized Model

The model extended by Yilmaz et al. [22] allows the nonlinear interactions and uses affine linear
terms as shifts. However, the recursive iteration idea mentioned in [7] is lost by these shift terms, at
the first glance. Thus, we again turn to (CE) by making following affine addition:

(ACE) E = M(E)E + C(E).

Here, we defend that additional column vector C'(E) can represent the environmental perturbations
and provide us better least-squares approximations which has already been guaranteed by regarding
the important and the basic case where C'(E) is constant, i.e., C(E) = C. Differently from M (E)E,
the second term (shift) C(E) does not need to reveal E as a factor, e.g., exp or cos. In case where
M(E) and C(FE) are polynomial, component-wise understood, M (F)FE may have a higher degree than
C(E).

Our approach in overcoming the more complex form of (ACE) algorithmically is that C'(E) can be
written as



where

Ci(E) 0 E;
Ca(E) Es

M(E) := diag(C"(E)) = o and F:=
0 () B

In fact, we shall see by means of the corresponding initial value E(tg) = e (e := (1,1,...,1)7) that

the time depending variable E is constant (i.e., £ = 0) and identically £/ = e. In this sense, (ACE)
is equivalent to ) 3 3
B = M(E)E + M(E)E.

Let us define the vector and the matrix

—(E _( M(E) M(E)
E:= (E’) and M(E) := ( 0 0 ) .

so that we end up with the following form of an extended initial value problem

Ey

1
€ E=M®E and BB = ( 5 ) -

1

In this study, we (without further drawbacks) combine and benefit from both the affine term structure
to model gene expression patterns for better least-squares approximations and more accurate future
predictions, and the time-continuous iterative matrix multiplication approach by means of higher
dimension 2n.

5.1 Time Discretization

Discretization concerns the process of transferring continuous models and equations into discrete
counterparts. Numerical solution generated by simulating the behavior of system governed by ODEs,
initiated at to with given initial value Fy, is an approximation to the solution at discrete set of points.
We follow trajectories with approximate solution values. Hence, choosing a suitable numerical method
applied on the time-continuous model is an extremely important task. Euler’s method, the simplest
case of time-discretization, have been used for gene expression patterns, but we know that it is
slow and inaccurate. Thus, on our way of using more refined and convincing techniques, we use a
Runga-Kutta discretization method.

5.1.1 Runga-Kutta Method

While solving ODEs numerically, we face with two kinds of errors, namely, the rounding error as a
result of finite precision of floating-point arithmetic and, secondly, the truncation error associated
with the method used. For example, in Euler’s method the truncation error is far larger because the
curve E(t) is approximated by a straight-line between the end-points ¢, and tx11 of time intervals.
In addition, Euler’s method evaluates derivatives at the beginning of the interval, i.e., at t;x which
makes the method asymmetric with respect to the beginning and the end of the interval. Hence,
more symmetric integration methods like Runge-Kutta method (RK), which takes into account that
the midpoint of the interval can be applied on the the system (CE)__,. Runge-Kutta methods have
the advantage of stability which is closer to the stability of the given time-continuous model.

RK methods use only the information at time ¢;, which makes them self-starting at beginning of
integration, and also makes methods easy to program, which accounts in part for their popularity
[11].

A central idea of applying RK methods to model of gene expression patterns was first introduced by
Ergeng and Weber [6]. Here, we illustrate the application of a different RK method, called Heun’s
method. Heun’s method is a modified version of Euler’s method, more illustrative, explicit and the
simplest case of the Runge-Kutta approach. In our extended space it is formulated as follows:

h
Ery1 =Ep + %(/ﬂ + ka), (1)
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where

k1 = M(Ek)Ek, and
ky = M(Ek +4 hkkl)(]Ek +4 hkk1).

More explicitly, instead of (1) we write

h h
Ex+1 = Ep+ lM(Ek)Ek + ?kM(]Ek + hiM(Eg)Eg)(Ex + hi M(E)Eg),
h h
& By = [T+ kM(}Ek) + kM(]Ek + heM(Ex)Eg) (I + hiM(Er))|Ex.
Defining
hk hk

we get the following discrete equatlon

(DE) Exs1 = MiEx.

ext

Thus, we iteratively approximate the next state from the previous one. We note that since the
experimental results are represented as Eo, Ex, ..., Ej—1, we can represent the approximations by
E;,Es,...,E;_1 in the following way: setting Eq = Eo, the k** approximation is calculated as

Ek = Mkfl(Mk,Q...(Ml(MoEo))) (k S No)

Having a multiplicative formula for predictions has a great analytical and numerical advantage.
Now, according to our motivations of stability analysis given in Section 1, these iterative matrix
multiplications in front of the given initial state Ey force us to consider the stability and boundedness
of the solution. Thus, we investigate the questions concerning how products of matrices My look
like, what is the product structure and what does the block structure say about boundedness or
unboundedness of the products of finitely many matrices.

6 Algebra of Matrix Products

Let us remember that the matrix in the time-continuous model has the canonical form

M(E) :< M((JE) M(()E) )

These matrices help us for defining relation between genes and understanding the structure of gene
networks. The product of two matrices having this block form is again a matrix in the same structure,
because for any X,Y € R" it holds:

( ME)X) MEJX) ) < MéY) Méy) > B ( M(X)M(Y) M(X)M(Y) >

Matrix multiplication is not needed in the case of the time-continuous model, but we try to under-
stand whether our matrices My, and their products in the time-discrete iterative system have some
”canonical” block form or not. After some simplifications and by definition of My, we find that

et (M )00 )L (2 8,

where I = I, (unit matrix of type (2n) x (2n)) and

A = M (Ex+ he (M(Er)Ex + M(Ex)Er)),

A = M (B +he (M(Ey)Ew + M(Ey)Ey)),

B = M (Ex+ hx (M(Ex)Er + M(Ex)Ey)) M(Ex) and
B = M (Eyx+hx (M(Ex)Ex + M(Ey)Ex)) M(Ey)

‘We conclude that M has its final canonical block form

<M/<E\k> ﬁ@)),
0 I,



Here, one of our main questions concerns iterative multiplication of matrices having the same form
with model M. In the next section, for our stability analysis we have to study these matrices My in
detail. What a form has the product of two and, by induction, finitely many matrices M? By using
/1, B , C , D to represent the corresponding block matrices; we calculate:

A B C DY _(AC AD+B\ _ (K L
0 I, 0 I. )] \ 0 I, N0 I, )

We observe that any finite product of matrices in the extended space preserves the same structure as
a single matrix M. In fact, multiplying any canonical matrix My by a vector (ET,e™)7 reproduces
a vector (ET, eT)T of the same type. For this reason, there is no restriction if we focus our attention
on the first n coordinates of the vectors and on the first n rows of our matrices.

By linear algebra it is easy to see that the matrices
< K L

0 In) and K

have the same eigenvalues if we disregard the ones coming from the n X n unit matrix I. In fact,
the additional eigenvalue 1 has its algebraic multiplicity equal to its geometrical multiplicity as it is
being requested for the eigenvalue A with |A\| = 1 to ensure stability (cf. [10]). This enables us for
doing a similar, n-dimensional stability analysis performed for (CE) in [7].

From the point of view of mathematics, stability is a condition on the behavior of dynamical systems
under initial perturbations around equilibrium points. This can be thought as a characterization of
environmental changes (perturbation) given to the system, of disease or of the treatment of the cell
by some medicine or radiation. Since gene expression values lie in a bounded region, stable solutions
can refer to a better goodness of data fit (see Figure 1).
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Figure 1: Real data [19] and model stability .

Here we start with mathematical definition of stability of a time-continuous system:

Definition 1 A point E* € R™ is called an equilibrium point of system (S) E = f(t, E) where
(t,E) € RxR" if f(t,E") = 0 for all t € R. An equilibrium E* of (S) is called stable (in the
Lypunov sense) if for every € > 0 there exists a § = §(g) > 0 such that it satisfies at time t = to
||E(t) — E*|| < 6 and for all t > to ||E(t) — E*|| < e.

A common method for demonstration of stability is to find a Lyapunov function for that system.
However, the problem of finding a suitable Lyapunov function arises because there is no general rule
for establishing such functions [2]. Therefore, an algorithmic method which studies stability and
introduces Lyapunov functions in the time-discrete case has first been introduced by Brayton and
Tong [2]. In this paper, we are focussing more and the analytical side of our research. Herewith,
we prepare the algorithm, our insight in its working. The algorithmical theory is in detail explained
in [1, 2] for the case of Euler discretization, and in [6, 19|, corresponding with our extended model
and Runge-Kutta discretization used. In any of these cases, the algorithm bases on the study of a
sequence of polyhedra by which we observe the virtue on matrices applied, i.e., stability or instability
of the dynamics considered to become detected.

The stability of time-continuous model (CE)eqt describing gene expression profiles is strongly related
with the stability of time-discrete system (DE)__, introduced in the next section by the following
theorem.

ext



Theorem 2 [2] Let the map E — M(E) be Lipschitzian. If the time-discrete system Epi1 = Ej +
hM(Er)Er (k € No), Ep € R2" some appropriate hmaz > 0 being given, is stable for all values
hi. € [0, hmaz], then the continuous system E = M(E)E is also stable.

Proof. See [2]. m

In [2], it is shown that the stability of time-discrete model is determined by stability of a set of
matrices, M = {Mo, My, ..., M;_1 }, derived from discretely approximating the set

{M(E, h)| E e R2n, h e [07 hmaw]},

where M(E, h) := 1+ hM(E).
Since, however, we are using RK method, in our case, M(E, h) takes the form :

M(E, h) := I + gM(]E) + gM(]E + hM(E)E)(I + hM(E)).

In fact, we are discretizing the function M(E, h) in a way that the values of the implied matrix entries
are taken at their maximal or minimal values, and h (by hmaz) chosen extremally as well. When
iteratively applying the resulting entire matrices to polyhedral sets, then we represent and understand
the worst-case growth behavior of any finite matrix multiplication, i.e., whether instability is holding.

7 Stability of a Set of Matrices

Let M = {Mo, My, ..., M;_1} be a set of given real matrices. (There should not be any confusion with
the usage of M, for the k'" iterate of the time-discrete dynamics, here.) We will consider the larger
multiplicative semigroup M’ containing all finite products of matrices produced from M. In other
words,

k
M = {H MY My eM, I, eN(se{l,2,..,k}),
s=1 k
M #Msp1 Vs<k—1, k€N, > l,=p, peN}
s=1
Since our dynamical analysis bases on the linear algebra of matrices, especially, on the spectral study
of eigenvalues, we have to locate our study over the complex numbers rather than the reals.

Definition 3 The set M is stable if for every neighborhood of the origin U C C™ there exists another
neighborhood of the origin U such that, for each Ml € M’ it holds: MU C U.

Brayton and Tong proved that M is stable iff B* is bounded, where

B*:= | JB,, with By :=H <U Mi/ﬁk1> and k' =k—1 (modm).
j=0

j=0

The algorithm of Brayton and Tong has a great advantage: We can analyze a set of matrices, derived
as explained above. and we can decide for which combination of these matrices the underlying dy-
namical system is stable or not. As the matrices represent biological information (which is influenced
by errors, estimations, pollution, etc.) the approach can support biological work in a very com-
fortable way. The question of stability is answered by automatically generated Lyapunov functions.
There are also other procedures possible. With the proposed algorithm of Brayton and Tong which
is implemented by Pickl, Tagtan and Weber, the frontier line between stability and instability regions
can be analyzed in detail. Biological effects can be studied in a very fine way. It might be very
interesting to deepen the insights about the effect of the additional ”shift term” C(FE), representing
a (deterministic) error function or even a stochastic error variable.

8 Conclusion

In this study, from the viewpoints of statistical learning and dynamical system theory, for making
models more realistic, approximative and better prepared for stability analysis, we improved the
mathematical model and stability analysis. Here, we analyzed the system by considering advantages
of the Runge-Kutta methods. Thus, our study may help these techniques to achieve new insights
by means of mathematical modeling, dynamical systems, optimization and combinatorial algorithms.
This paper focused very much to a motivation and on analytical preparation of our algorithm. Please



find this refined and discrete combinatorial procedure in detail explained and by an example illustrated
in [7, 19]. In fact, when applying it on real-world data, we will see it serve.

In the future, it is our aim to find the regions of stability algorithmically based on real data. Within
the regions of stability, we accept the ”hypothesis” of our mathematical model, i.e., parameter esti-
mation has been done in a satisfactory way. There are still a lot of challenges in the optimization of
biosystems.
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