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Abstract

A centrally important research area of computational biology, biotechnology - and
life sciences at all - is devoted to modeling, prediction and dynamics of gene-
expression patterns. However, this enterprise cannot be investigated in a satisfy-
ing way without the role of the environment, including the societies, members of
the international community of nations. For a representation of past, present and
predicted future states, we also acknowledge the existence of uncertainties in mod-
ern technology and decision making, and the negotions in solving societal problems
and in international collaboration. We survey and closer explain recent advances
in understanding the mathematical foundations and interdisciplinary implications
of the newly introduced gene-environment networks; the main basis of our paper
is [104]. We integrate the important theme of environmental protection by joint
international projects into the our context of networks and their dynamics. As an
example of environmental protection, we study CO2 emissions, their implications
for global warming by greenhouse effect, the reduction of both and the joint im-
plementation requested for this purpose by Kyoto protocol. Given data from DNA
microarray experiments and environmental records, we extract nonlinear ordinary
differential equations which contain parameters that have to be determined. This is
done by modern approximation and optimization. After this, time-discretized dy-
namical systems are studied by a combinatorial algorithm which detects the region
of parametric stability. Finally, we analyze the “landscape” of gene-environment
networks. Its structure and stability have a very important meaning for the under-
standing of life and social system and of the conductability of common enterprises,
e.g., in the environmental sector. To represent the interactions between the project
participants, we imply modern collaborative game theory where the players may be
individuals or companies or, in particular, nations.

This pioneering work is practically motivated and theoretically elaborated; it is
devoted to support improvements in the living conditions of people all over the
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world, especially, in health care, medicine, education, environmental protection and
public awareness. The authors invite the interested readers to future research.

Key words: Living Conditions, Environment, Computational Biology, Medicine,
Uncertainty, Modeling, Collaboration, Games, Joint Project, CO2 emissions,
Global Warming, Dynamics, Matrix, Structure, Complexity, Stability,
Optimization

1 Introduction

“Can mathematics or Operations Research model the complexity of nature and
environment under the limitations of modern technology and in the presence
of various societal problems?” We answer: “yes”, but in the margins of our
developing understanding only, in this sense: approximately, dynamically and,
newly, as being in a game. Any new improvement of the model gives a chance
for a deeper insight into the nature and a hope for a continuous service to the
people, an overcoming of most challenging problems, on the microscopical, the
local and on the global stage as well. The complexity of the environment also
includes psychological, societal and political phenomena; tackling its modern
challenges as far as it concerns the relations to nature and the life of hu-
mankind is not an easy task. However, we present another extension of our
previous research it this direction, a first one in our research tradition which
more systematically employs game theory. This contribution is established on
three of directions of of consideration: (i) contemporary progress in modeling
and prediction of gene-expression patterns, (ii) recent inclusions of the inter-
actions between biological life and the environment (cf. [104] which is an basis
of this paper), and of (iii) errors in modern technology, e.g., DNA microarrays,
of environmental data recording and processing, and in the uncertainties of
various kinds of dependencies, decisions and negotiations. Our special empha-
sis will be on a use of cooperative game theory to represent the international
collaboration of joint projects [92].

We aim at a contribution to scientific progress and, eventually, to services
in medicine, health, food production, industry, politics, education and envi-
ronmental protection. This work benefits from the recent paper [104] which
firstly introduced CO2 emission control by joint projects (joint implementation
of Kyoto Protocol) into our modeling of biosystems.
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For modeling and prediction of gene-expression or environmental levels, two
quantities are coupled: the concentrations or states and their dynamics (rates
of change); both of them are of a “primal” importance. For the environmental
effects, a “dual” role is reserved; indeed, we can speak of some “duality”, the
two sides of one coin [94,106] which jointly characterize our learning problem.
In terms of optimization and decision, this is called a bilevel problem [106,107].
Here, one class of variables contains parameters under perturbation that lead
to a response by the variables of the remaining second class. In this context,
a perturbation means some slight impact or stimulus on a parameter, espe-
cially, by the environment. For a deep understanding about the states and the
variation of genetic and environmental patterns we employ the tableworks of
matrices, received via least-squares estimation, we employ a matrix algebra
and a game theoretical interpretation. Matrices encode our gene-environment
networks and they specify their concrete dynamics. This constitutes the basis
for both a testing of the goodness of data fitting and prediction base. The con-
certed effect of our matrices, each of them standing for a linear transformation,
can be characterized by various dynamical phenomena and comprised by sta-
bility or instability. Those discrete “forward” orbits are generated by matrix
multiplication, iteratively performed; we can analyze them by the combinato-
rial procedure of Brayton and Tong [12,93].

Stability classically, e.g., in physics, mechanics, technology, population dynam-
ics and medicine, has a positive interpretation in terms of some local order, a
coming to a rest (recovering) or as the robustness of a system against small
perturbations such as infections or attacks [40]. In contrast, there is also a
negative meaning: an organism, a living being, a biosystem, which is inflexible
by being unable to adapt to a changing environment; then it is in a serious
danger caused by bacteria, viruses, radiation and other kinds of attacks. Fur-
thermore, a stability analysis can also serve for the acceptance or rejection of
a mathematical model, i.e., to a testing of the goodness of data fitting and,
if needed, for a model improvement. In fact, if any state dimension of the
model behaves unbounded under parametric variations, then this contradicts
the natural-technical limitation of the genetic and environmental levels by
bounded intervals.

Genetic networks mean a weighted directed graph composed of nodes rep-
resenting genes, and of arcs with functional weights standing for the influ-
ences between the genes; but also each node can be equipped with a (level)
function of the other genes’ combined effects on it. For each gene we wish
to predict how it influences the other genes. Various analytic and numerical
tools have been developed for the construction and understanding of such
networks [1,20,23,31–34,36,48,68,101,84,86,93,105–108,112,113]. A simple ad-
ditive shift included on the right-hand side of differential equations served
to appropriately extend the model space; then, we interpreted the shift by
the relevant environmental factors. In [93,94,105–108], we firstly extended ge-
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netic networks to gene-environment networks. Now, the new nodes are en-
vironmental items such as poison in soil, groundwater, in air or food, emis-
sions, radiation, but also the welfare and living conditions, temperature (e.g.,
global warming), but also education, campaigns for a healthy lifestyle and
joint projects in ecology.

Errors, uncertainties and measurement ambiguities belong to the characteris-
tic features of technology, even to high tech. In particular, for a large number
of genes the expression levels can easily be monitored by DNA-microarray ex-
periments [17], but despite the fast technological advances, it is nevertheless
affected with imprecision, ambivalence and uncertainty [29,94,107,108]. There-
fore, we included these errors into our model. We represent various kinds of
errors by intervals [94,104,107,108].

Complexity is a central property of gene-environment networks and of any
approach to investigate them. Hence, we impose upper bounds into the pa-
rameter estimation problem and, by this, force the number of edges to diminish
and make the parameter estimation become a mixed continuous-discrete pro-
gramming problem. Because of the modeling deficiences of that problem and
for algorithmical reasons, we relax the inequality constraints to become con-
tinuous and depending on the environmental items, maybe also on time and,
very importantly, on errors and uncertainties located in intervals, the problem
becomes a one from semi-infinite programming (SIP). In addition, by allow-
ing dependence of the domain of combined external effects on the unknown
environmental parameters, we obtain a generalized semi-infinite programming
(GSIP) problem. Herewith, we permit regulation of the network’s edge den-
sity in a more refined and soft way, and we can more confidently guarantee
existence and tractability of genetic and metabolic processes. GSIP is an ad-
vancing wide problem class with many motivations, results, future challenges
and many practical applications even today [79,83,102].

Environmental items themselves and how they exercise effects - often in mutu-
ally catalyzing or multiplicative ways, are becoming very important, the more
so as we are living in a time of globalization, of rapid information exchange,
of mobility and multicausalities in all kinds of biosystems, communities and
societies. This paper acknowledges this situation and offers a mathematical
contribution to its challenges.

Control of carbon dioxide emission is an central issue in environmental protec-
tion [56–58,71–73]. We will embed CO2 emissions reduced as well as finanical
means of the countries into the gene-environment network, and look at this
topic from the viewpoint of modeling and stability of a time-discrete dynam-
ical system. By this we provide an important example and module which will
in future become closer integrated into the entire wide spectrum of biological
and environmental items. Before we return to this in Section 8, let us sketch
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the situation briefly.

2 CO2 Emission Increase and Global Warming:

Problem and First Approaches

2.1 Introduction

Carbon dioxide (CO2) is a naturally occuring gas. Plants need it to live and
grow. But over billions of years, plants have used and trapped a large por-
tion of the CO2 in the earth’s atmosphere. As the plants turned into oil and
coal, CO2 was trapped underground. Carbon dioxide is an invisible gas that is
harmless to humans. Both CO2 and carbon monoxide are produced by burn-
ing fossil fuels (gas, coal and oil). The initial CO2 in the atmosphere of the
young earth was produced by volcanic activity, this was essential for a warm
and stable climate conducive to life. Volcanic activity now releases about 145
million to 255 million short tons of carbon dioxide each year. Volcanic releases
are about 1 % of the amount which is released by human activities. There has
been a rise of the CO2 concentration in the earth’s atmosphere of around 40 %
since the beginning of global industrial revolution (see Figure 1). It is present
in the earth’s atmosphere at a low concentration of approximately 0.038 % and
is an important greenhouse gas. The rise in concentration is directly related
to the rate of CO2 emissions. Anything one can do to reduce CO2 emissions
will directly effect the concentration of this gas, albeit in a small way. Despite
its small concentration, CO2 is a very important component of earth’s at-
mosphere, because it absorbs infrared radiation and enhances the greenhouse
effect. First humans lived in an environment with reduced CO2 concentration.
Modern use of oil, coal, natural gas, etc. is releasing trapped CO2 back into
the atmosphere very quickly. Figure 2 illustrates the CO2 variations, its cycles
and the rapid change which happens in these decades. The main effect of CO2

in the atmosphere is that it acts as a greenhouse gas, trapping the heat of the
sun inside the atmosphere and making the earth warm up. Warmer tempera-
tures will mean that the icecaps and glaciers of the south pole and other areas
will melt, raising the sea level.

2.1.1 The Kyoto Protocol

The Kyoto Protocol is an agreement made under the United Nations Frame-
work Convention on Climate Change (UNFCCC). Countries that ratify this
protocol commit to reduce their emissions of carbon dioxide and some other
greenhouse gases, or engage in emissions trading if they maintain or increase
emissions of these gases (see Figure 3). The objective is “the stabilization of
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Fig. 1. The change in the atmospheric concentration of CO2 over the last 1000
years, based on ice core analysis and, since 1958, on direct measurements. Inset is
the monthly average concentration of CO2 (in parts per million by volume) since
1958 at Mauna Loa, Hawaii [11].

Fig. 2. Variations in concentration of CO2 in the atmosphere during the last 400
thousand years [56–58].

greenhouse gas concentrations in the atmosphere at a level that would prevent
dangerous anthropogenic interference with the climate system”. The treaty was
negotiated in Kyoto, Japan, in December 1997, opened for signature on March
16, 1998, and closed on March 15, 1999. The agreement came into force on
February 16, 2005, following the ratification by Russia on November 18, 2004.
As of April 2006, a total of 163 countries have ratified the agreement. The Ky-
oto protocol now includes more than 163 countries globally and over 55 % of
global greenhouse gas emissions (cf. Figure 4). The protocol also reaffirms the
principle that developed countries have to pay, and supply technology to other
countries for climate-related studies and projects. This was originally agreed
in the UNFCCC. Economists have been trying to investigate the overall net
benefit of Kyoto Protocol through a cost-benefit analysis. Just as in the case
of climatology, there is disagreement due to large uncertainties in economic
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Fig. 3. Global trends in major long-lived greenhouse gases through the year 2002. Five
gases account for about 97 % of the direct climate forcing by long-lived greenhouse
gas increases since 1750 [57].

Fig. 4. Participation in the Kyoto Protocol, where dark green indicates countries that
have signed and ratified the treaty and yellow indicates states that have signed and
hope to ratify the treaty. Australia and the United States have signed but, currently,
decline to ratify it [57].

variables. Still, the estimates so far generally indicate either that observing
the Kyoto Protocol is more expensive than the not observing the Kyoto Pro-
tocol or that the Kyoto Protocol has a marginal net benefit which exceeds
the cost of simply adjusting to global warming. The Copenhagen consensus
project found that the Kyoto Protocol would slow down the process of global
warming, but has a superficial overall benefit [57].

The Convention on Climate Change sets an overall framework for intergovern-
mental efforts to tackle the challenge posed by climate change. It recognizes
that the climate system is a shared resource whose stability can be affected by
industrial and other emissions of carbon dioxide and other greenhouse gases.
This convention enjoys near universal membership, with 189 countries having
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ratified. Under the convention, governments [56] (I) gather and share infor-
mation on greenhouse gas emissions, national policies and best practices, (II)
launch national strategies for addressing greenhouse gas emissions and adapt-
ing to expected impacts, including the provision of financial and technological
support to developing countries, and (III) cooperate in preparing for adapta-
tion to the impacts of climate change.

2.1.2 Climate Change

The climate change refers to the variation in the earth’s global climate or
regional climates over time. It describes changes in the variability or aver-
age state of the atmosphere - or average weather - over time scales ranging
from decades to millions of years. These changes may come from internal pro-
cesses, be driven by external forces or, most recently, be caused by human
activities [57]. Greenhouse gases, primarily CO2, methane and water vapour
contribute to global warming [58]. In recent usage, especially in the context
of environmental policy, the term climate change is often used to refer only to
the continuous changes in today’s climate, including the average rise in sur-
face temperature known as global warming. How large are CO2 emissions from
human fossil-fuel energy consumption? The annual increase in measured CO2

amounts in air is approximately 60% of the amount that is added annually
from these sources. It is estimated that the remainder is absorbed into oceans
[21].

Each greenhouse gas - such as carbon dioxide, methane and water vapour
- has a different capacity to cause global warming, or the global warming
potential (GWP), defined as the warming influence over a set time period of
a gas relative to that of carbon dioxide. A 100-year time horizon is used in
the Kyoto Protocol. It is thought that CO2 will be responsible for about two
thirds of the expected future warming. By the middle of the next century, it
may be warmer than it has been since before the last ice age. Small island
states and countries close to sea level - such as Bangladesh, with extensive
low-lying coastal areas - are especially vulnerable to sea-level rise. Many high-
mountain regions could experience significant changes in ecosystems and water
resources [96]. On the other hand, a warmer climate may seem welcome. But
it could bring disruption of crops in the world’s main food-producing regions,
famine, economic instability, civil unrest and even war.

In Section 8, we will return to this problem field and present our model, control
and game.
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3 Gene-Expression and Environmental Data,

Modeling and Dynamics

3.1 Introduction

3.1.1 Modeling by Intervals

At first and preliminary stages of modeling, time-continuous models of the fol-
lowing form of time-autonomous ordinary differential equations (ODEs) tried
to imply gene-environment networks and their information:

Ė = F(E).

Here, E = (E1, E2, . . . , Ed)
T is the d-vector of both positive concentration lev-

els of proteins (or mRNAs, or small components) and certain levels of the
environmental factors, while Ė (= dE

dt
) represents a continuous change in the

gene-expression data, and Fi : Rd → R are nonlinear coordinate functions of
F (cf. [20,47,80,93] for different dimensions). In this paper, we present a pa-
rameter estimation of unknowns implied into the definition of F, established
on experimental data vectors E of those levels. Since these vectors E, obtained
from microarray and environmental measurements, are merely approximating
the actual states E at the sample times of the experiments, we have the fol-
lowing relations at these times [94] Ei = Ei ± erri (i = 1, 2, . . . , d). Here,
erri ≥ 0 is an error likely to be made at the experimental measurements of
the gene- or environmental expression level Ei. For a closed representation of
all cases, we use intervals [Ai, Bi] determined by some maximal measurement
error Erri > 0 which leads us to consider the state Ei just to be the interval
[Ai, Bi] := [Ei −Erri, Ei + Erri] and, hence, E = (E1, E2, . . . , Ed)

T to be in the

d-dimensional parallelpipe X
n

i=1[Ai, Bi] = [A1, B1]× [A2, B2]× · · · × [Ad, Bd].

For closer information about this approach recently repared and introduced
for gene-environment networks, we refer to [94,107,108].

3.1.2 Basic Connections with Intervals Dynamics and Optimization

When a model is built by mathematics, certain precise data are assumed;
however, in the real world, this is seldom fulfilled. Indeed, the data known
and the values obtained are in some certain ranges, where assumptions hold
true approximately. Therefore, in linear programming (LP) programs, data
uncertainty is unavoidable. Let

∑n
i=1[ui, vi]xi be the objective function of an

optimization problem which is subject to xi ≥ 0 (i = 1, 2, . . . , n). Then,
the relation

∑n
i=1 uixi ≥

∑n
i=1 vixi is valid for all nonnegative vectors x =
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(x1, x2, . . . , xn)T ≥ 0 [78]. If we have an LP program with interval coefficients,
then, the solutions can be found by using simplex method [12,78].

In the presence of uncertainty, interval matrices M play an important role;
their entries are closed intervals:




[
m11,m11

]
. . .

[
m1n,m1n

]

[
m21,m21

]
. . .

[
m2n,m2n

]

... . . .
...

[
mn1,mn1

]
. . .

[
mmn,mmn

]




,

and a concept about block matrices whose entries are interval matrices them-
selves, can also be developed. Let us consider a dynamical system of continuous
differential equations on gene-expressions as follows:

(CE)gene Ė = M(E)E.

From (CE)gene we get the following time-discrete equation:

(DE)gene E(k+1) = M (k)E(k) (k ∈ N0).

Here, the interval matrices M (k) are taken from M(E), and their stability can
be investigated by Brayton and Tong’s algorithm [4,12,34,106,107]. For more
notions, details and application of interval algebra and comparison, we refer
to Section 5 and [13,22,28,42,61,62,78,107].

This entire wide framework allows us to approximately address the nature of
biological and environmental phenomena, and technical phenomena of mea-
surement and modeling as well; it extends the one from [34,36] such that the
continuous equation looks as follows [93,94,106]:

(CE) Ė = M(E)E, E(t0) = E
(0).

Here, M(E) is a (d×d)-matrix whose entries are intervals and defined by a fam-
ily of functions which include unknown parameters. Now, intervals represent
uncertainty with respect to the interactions between the genes, to the effects
between the environment and the genes, or between environmental items. By
this, they will constitute a dynamics. The point E(0) = (E

(0)
1 , E

(0)
2 , . . . , E

(0)
d )T

consists of the interval-valued initial levels, available, e.g., by the first ex-

perimental data point E(t0) = E
(0)

. For finding an approximate model and
network, the least-squares or Chebychevian optimization problem will finally
be restricted by bounds imposed on the number of regulating effects exercised
per gene and depending on the effects of the environment onto the genes.

Example 3.1 An easy 2-vector E = (E1, E2)
T is given by the matrix M(E)
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with nine unknown real parameters a1, a2, . . . , a9 [107]:

Ma1,a2,a3,a4,a5,
a6,a7,a8,a9

(E) :=




[a1, a2]E1 [a3E
2
2 , a4E1E2] + a5

a6 cos(E2) + [a1, a8] sin(E1) [a7, a8] exp(a9E
2
1)


 ,

where each entry is an interval. Here, polynomial, trigonometric, exponential
but otherwise logarithmic, hyperbolic, spline, etc., entries represent any kind of
a priori information, observation or assumption in terms of growth, cyclicity,
piecewise behaviour, etc. [31]. In [87,88], we studied the case of approximation
by splines.

3.1.3 Two Levels of the Parametric Task

Referring to the parametrized entries, a bilevel problem [33,34,52,83,94,102,106]
of two different problem stages can be distinguished, namely, optimization and
stability analysis:

(I) The optimization (approximation) problem of squared errors bases on the

form miny

l−1∑
κ=0

∥∥∥∥My(E
(κ)

)E
(κ)

− Ė
(κ)

∥∥∥∥
2

∞

, where the vector y is comprises a first

subset of all the parameters. The vector Ė
(κ)

consists of interval-valued differ-

ence quotients raised on the κth experimental data E
(κ)

and on step lengths
hκ := tκ+1 − tκ between neighbouring samplings times [31,36,94]. Since we
turned to an interval-valued setting, we inserted the Chebychev or maximum
norm ‖·‖

∞
generating the topology of uniform convergence (cf. Section 6).

Thus, we turned from discrete (Gaussian or least-squares) approximation and
nonlinear optimization [10,31,36,41,50,63,93] to uniform (Chebychev) approx-
imation and semi-infinite optimization [94,107,108] (cf. Section 7). (II) Stabil-
ity of the dynamics is investigated with respect to the remaining parameters.
For this a combinatorial algorithm on polyhedra sequences observed is used
to detect the regions of stability. Indeed, the key advantage of (CE) lies in its
structure that allows a time-discretization represented by a sequence of matrix
multiplications. Based on this recursion, a stability analysis of combinatorial
and geometrical type with polytope series is permitted [34] (cf. Section 5).

3.1.4 The Influence of the Environment

Gene-environment interaction is frequently characterized as epigenetic, which
refers to stable changes of gene expression patterns in response to environ-
mental factors without any mutations in the DNA sequence [104]. Besides
DNA methylation being one of the most common epigenetic factors, there
are also others, such as acetylation, ethylation and phosphorylation, providing
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important epigenetic regulations. Studies on identical twins showed that al-
though they have the same genomic sequences and genes, but no epigenetic
difference during the early stages of life, adult twins possessed very differ-
ent epigenetic patterns affecting their gene-expression portrait [30]. Moreover,
nutritional conditions of grandparents can have phenotypic consequences in
their grandchildren [27,55]. Lifestyle, nutritional supplementation, and envi-
ronmental conditions can have a very important impact on inheritance by
changing the DNA sequence with mutations and also by affecting epigenetic
pattern of DNA through methylation, ethylation, etc., without changing the
DNA sequence. Hence, for a better explanation of the complexity of nature,
genetic networks cannot be studied solely without taking into consideration
the environmental factors which affect epigenetic patterns and, thus, gene ex-
pression patterns [106]. As an important example, we will study carbon dioxide
emissions and global warming.

3.1.5 Example for a Gene-Network

Let us from now on for a while focus on the n genes and their interactions and,
then, step by step, return to our general model in dimension d > n; actually,
d = m+2n as we will see, with m being the number of environmental items. In
Section 4, we shall return to the d dimensional (extended) model and mainly
add the influence of the environment on the gene.

Example 3.2 In dimension n, we look at the following system of differential
equations [35,36,108]:

Ėi = −δiEi +
αi∑

α=1

(reg f+)α +
βi∑

β=1

(reg f−)β + ci (i = 1, 2, . . . , n),

where ci ≥ 0 and δi ≥ 0 represent real- or interval-valued rates of basic synthe-
sis and basic degradation, and the sums correspond to activation or inhibition
by other network components, respectively. The activation and inhibition func-
tions reg f+ and reg f− have been shown to possess a sigmoid shape [110]. The
resulting (n × n)-matrix M(E), where E = (E1, E2, . . . , En)T consists of the
first n components of E, has the entries

mii(E) =
ci

Ei

− δi + kii

Emii−1
i

Emii

i + θmii

ii

(i = 1, 2, . . . , n),

mij(E) = kij

E
mij−1
j

E
mij

j + θ
mij

ij

(i, j = 1, 2, . . . , n; i 6= j)

with kij and θij,mij(E) being any or nonnegative reals (or intervals), respec-
tively. Now, some or all of the parameters can be estimated based on data from
DNA-microarray experiments.
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4 From the Special to the Extended Dynamics of Gene-Expression

and Environmental Patterns

When especially referring to the n genes and their interaction alone, the dy-
namics looks as follows: (CE)gene Ė = M(E)E, sharing with (CE) the same
multiplicative structure, which is the basis of the recursive iteration idea [34].
Not to lose this recursion property by the shifts proposed in the model exten-
sion of (CE)gene by introducing constant affine linear shifts terms in [112,113],
we shall reconstruct the form of (CE)gene by a dimensional model extension.
This will even allow to represent our following affine continuous equation
which includes a variable shift vector [84–86,93,106]:

(ACE)gene Ė = M(E)E + C(E),

where the additional column C(E) provides a more accurate data fitting and
may represent a vector of environmental perturbations or contributions. Dif-
ferently from M(E)E which exhibits E as a factor explicitly, the shift C(E)
does not need to imply E as a factor. This shift may be, e.g., exponential,
logarithmic, trigonometric, but also piecewise polynomial (splines). If the in-
terval entries of M(E) and C(E) are given in a closed or piecewise form by
polynomials, then the vector C(E) of various environmental effects should re-
veal degrees less than the ones in the vector M(E)E. We can call an additive
decomposition as given by (ACE)gene a normal form, an unfolding [9,16,41,52]
or a (generalized) additive model [41,87–89]. In fact, emissions, poison in water
or food, dangerous drugs, social stress, changes in the lifestyle, (quantifiable)
educational measurements, and other environmental effects are displayed to
form the right-hand side of the system (ACE)gene. In this sense, we distinguish
and display special effects on each gene examinated by any environmental item
itself or cumulatively by all or several items working together or catalyzing
each other. This cumulative effect might not be further splittable or quantifi-
able by the single effects.

With (ACE)gene we included the disturbances and genetic changes caused by
the environment, in long and in short term, but we lost the convenient recursive
idea of matrix multiplication first of all. This drawback can be overcome by
increasing the dimension of the state space to d := m + 2n such that we
reconstruct that product structure. This reconstruction presented in [106] but
now modified by interval-valued entries [94], works as follows. We split C(E)
of (ACE)gene into the sum W(E)Ě + V(E), which gives

(ACE) Ė = M(E)E + W(E)Ě + V(E)

with Ě(t) =
(
Ě1(t), Ě2(t), . . . , Ěm(t)

)T
being a specific m-vector (of intervals)

which comprises the levels of the m environmental factors that can affect
the gene-expression levels and their variation. While some of the coordinates
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(factors) Ěℓ affect in a short term, the others may affect in a long term. We
may think of Ě as constant, but also piecewise constant or, generally, time-
dependent. In the case of a constant component Ěj, we can easily normalize
it to unity: Ěj ≡ 1.

By the weight matrix W = (wiℓ) i=1,...,n
ℓ=1,...,m

, the effects of the factors Ěℓ on the

gene-expression data Ei become incorporated into the system, and the n genes
and the m environmental factors are individually matched. Differently and
complementary to this, the column vector V(E) = (vi)i=1,...,n gene-wisely
comprises all the cumulative effects of all (or several) environmental items
influencing the genes together. This cumulation effect could also be repre-
sented by a new, (m + 1)st environmental item, taken into account for each
gene. In the time-continuous (instantaneous) system (ACE), the interval value∑m

ℓ=1 wiℓ(E)Ěℓ + vi is interpreted as the total effect of the environment on
the expression level Ei of gene i. Now, we overcome the more complex form
of (ACE) by an idea worked out and improved in [84–86,93,94,106]:

W(E)Ě + V(E) = M̌(E)Ě∨,

where the gene-environment matrix M̌(E) :=
(

W(E) | diag(V(E))
)

consists

of n · (m +n) intervals. Its second block represents V(E) as a diagonal matrix
with intervals on the diagonal. Now, putting Ě∨ := (ĚT , eT )T with the n-
vector e := (1, 1, . . . , 1)T of ones only, we get the following compact form for
(ACE):

Ė = M(E)E + M̌(E)Ě∨.

Introducing the d = m + 2n-vector

E :=




E

Ě∨


 ,

and the (d × d)-matrix

M(E) =




M(E) M̌(E)

0(m+n)×n 0(m+n)×(m+n)


 =




M(E) W(E) diag(V(E))

0m×n 0m×m 0m×n

0n×n 0n×m 0n×n




,

we arrive at our extended system (CE) together with an extended initial value
as follows:

(CE) Ė = M(E)E, E
(0) = E(t0) =




E(0)

Ě∨,0


 .
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We understand that there is an equivalence between this initial value problem
and the corresponding initial value problem for (ACE) [94]. In general, E(0)

and Ě∨,0 are chosen as the first experimental data vectors E
(0)

and Ě
∨,0

com-
ing from microarray experiments, followed by the environmental observations.

Here, Ě
∨,0

is the initial state of the special or cumulative environmental factors
having an impact on E and being expressed in a physical, chemical, financial
or social dimension. If the ℓth specific environmental factor Ěℓ is regarded as

affecting any gene-expression level, then, initially, the ℓth component of Ě
(0)

is considered to be 1, otherwise 0. Here, 1 (0) in Ě
(0)

ℓ means that the ℓth en-
vironmental factor is “switched on” (or “off”, respectively). In contrast, the
cumulative environmental effect is considered to be “switched on” always.

In (CE), equipped with the initial value Ě∨(t0) = Ě
(0)

, the time-dependent

variable Ě∨(t) is constant: Ě∨ ≡ Ě
∨,0

. Indeed, we have not included any
environmental dynamics, but our modeling framework allows us to do this!

5 The Time-Discretized Model and Stability Analysis

5.1 Time-Discretization

Heun’s method is a prominent example of the famous Runge-Kutta methods
on an approximative time-discrete modeling of our gene-environmental pat-
terns [24,26,84–86]. applied on (CE), Heun’s method looks as follows:

E
(k+1) = E

(k) +
hk

2
M(E(k))E(k) +

hk

2
M(E(k) + hkM(E(k))E(k))

×
(
E

(k) + hkM(E(k))E(k)
)

=

[
I +

hk

2
M(E(k)) +

hk

2
M(E(k) + hkM(E(k))E(k))(I + hkM(E(k)))

]
E

(k)

= M
(k)

E
(k).

Here, but also in the Eulerian case and some other methods [26,34], we can
comprise the discrete “pulse” compactly by matrix-multiplication:

(DE) E
(k+1) = M

(k)
E

(k).

Let the given data from DNA microarray experiments and environmental mea-

surements be comprised by E
(κ)

:=
(
(E

(κ)
)T , (Ě∨,κ)T

)T

(κ = 0, 1, . . . , l − 1).
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By Ê(κ) (κ = 0, 1, . . . , l − 1) we denote the approximations in the sense of
(DE), and we put Ê(0) = E(0). Now, the kth approximation or prediction, Ê(k),
is calculated by

Ê
(k) (:= E

(k)) = M
(k−1)(M(k−2) · · · (M(1)(M(0)

E
(0)))) (k ∈ N0).

Referring to earlier stages of modeling, in [84–86,112,113], we compared the
first l predicted expression vectors with the l data vectors and, by this, investi-
gated the quality of prediction, both theoretically and by numerical examples.

Via (DE) we obtain our gene-environment networks by the time-discrete dy-
namics (while our investigation permits a time-continuous approach to the
networks via (CE), too). Indeed, the genes and environmental items are repre-
sented by the nodes (vertices) of our network; the interactions between them
turn to edges weighted with effects (in the time-continuous case: with func-

tional values). Actually, the significant entries of M(k), say, m
(k)
ij , m

(k)
i,n+ℓ or

m
(k)
i,n+m+i, are the effects multiplied by E

(k)
j , E

(k)
ℓ or 1. Thus, at the discrete

time step k 7→ k + 1 the expression level of the ith gene becomes changed by
the one of the jth gene (or ℓth environmental item or the cumulative environ-
mental, respectively).

5.2 Matrix Arithmetics Applied

We briefly recall some elements of the interval-valued version [94] of our matrix
algebra and, in particular, multiplication [85,86]. Let us refer to the canonical
form of matrix partitioning presented for the time-continuous model in Sec-
tion 4. The product of two canonical matrices M(k), which are the foundation
of our networks, is a canonically formed matrix again. After some reorganiza-
tion and notation we get

M
(k) = I +

hk

2




M(E(k)) M̌(E(k))

0 0

A Ã

0 0


 +

h2
k

2




B B̃

0 0


 , with

A = M
(
E(k) + hk

(
M(E(k))E(k) + M̌(E(k))Ě∨,k

))
,

Ã = M̌
(
E(k) + hk

(
M(E(k))E(k) + M̌(E(k))Ě∨,k

))
,

B = M
(
E(k) + hk

(
M(E(k))E(k) + M̌(E(k))Ě∨,k

))
M(E(k)),

B̃ = M
(
E(k) + hk

(
M(E(k))E(k) + M̌(E(k))Ě∨,k

))
M̌(E(k)),
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such that M(k) has its final canonical block form, too:




M̂(E(k)) ˇ̂M(E(k))

0 Id


 .

About the form of two or more multiplications of such matrices M(k) and
the spectral theory which is important for our stability theory we refer to
[106–108].

5.3 Stability Analysis

Let M := {M0, M1, . . . , Mℓ−1} as a set of finitely many matrices over the in-
tervals (as entries) be yielded by (CE) with a sufficiently fine discretization of
M, W and V and entry-wise optimization [84–86,94] (without any confusion
with the previous meaning of M(k) as kth iterate). Furthermore, let M′ be the
matrix set of all the finite matrix multiplications of elements from M. The fol-
lowing definition originates in [12], but has been extended by us dimensionally
and by interval-valuedness [108].

Definition. [94] The matrix set M (herewith, (DE)), is called stable if for
every neighbourhood in Cd (or relative neighbourhood in Cn × {0′n+m}), U ,
of the origin 0d (or affine origin 0′d, given from 0d by shifting to 1 some of
the middle m coordinates and all of the last n coordinates), there exists a
(relative) neighbourhood V of the origin 0d (or 0′d) such that for each M ∈ M′

it holds: MV ⊆ U .

For the time-continuous system (CE), in case of constant time shifts, i.e.,
ht ≡ h (t ∈ R

+
0 ), there is a continuous orbit piecewisely defined along all the

intervals [kh, (k + 1)h). (If, in addition, the initial section E(t), t ∈ [0, h) is
a constant parallelpipe, then the dynamics is piecewise constant.) Herewith,
a stability condition can be defined analogously as in the previous definition.
For that case and when we concentrate on Euler discretization, having turned
from the scalar- to our interval-valued model framework, if the function M

of the right-hand side of (CE) is Lipschitzian, we learn the following theorem
from [107,108]. It extends the real-valued case where it even holds for some
Runge-Kutta discretizations presented [106].

Theorem. [108] Let the map x 7→ M(x) (x ∈ Rd) be Lipschitzian. If the
Eulerian time-discrete system Ek+1 = MkEk (k ∈ N0), E0 ∈ Rd, as in (DE),
some appropriate hmax > 0 being given, is stable for all values hk ∈ [0, hmax],
then the time-continuous dynamics defined by the system Ė = M(E)E (with
h > 0 sufficiently small) is also stable.

After some dilatation, the parallelpipes E can be embedded into neighbour-
hoods of 0d. Multiplying our matrices and vectors (over intervals) and ob-
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serving the resulting discrete orbits can be characterized by the scalar-valued
case that was introduced and investigated in, e.g., [12,34,106]. Indeed, each
member in an orbit of our set-valued products is representable as the convex
hull of the corresponding common matrix products that we obtain by focus-
ing on all of the finitely many combinations of the involved interval endpoints.
By referring to these endpoint combinations, we actually reduced the stability
condition to the classical one for the scalar-valued case [94,106,107]. Herewith,
we have carried over the stability theory and algorithmic methods of our and
our colleagues’ former investigations, e.g., the previous condition of paramet-
ric stability can be characterized analytically, spectrally and by Lyapunov
functions.

6 Extracting and Optimizing Gene-Environment Networks in the

Presence of Intervals

6.1 Introduction into the Model and Its Estimation

6.1.1 Our Hybrid Model

In the paper [36], a hybrid approach has been presented which offers a com-
plete dynamical description of the expression levels of n genes. Then, the
contributions [94,106] modified it by additionally matching the n genes with
m special items and the cumulative item of the environmental, and by turning
to the interval-valued setting:

(HE)

Ė(t) = Ms(t)E(t) + Ws(t)Ě(t) + Vs(t), with

Q(E(t)) = (Q1(E(t)), Q2(E(t)), . . . , Qn(E(t))), where

Qi(E(t)) :=





0, Ei(t) < θi,1

1, θi,1 ≤ Ei(t) < θi,2

...

di, θi,di
≤ Ei(t) (i = 1, 2, . . . , n).

In (HE), θi,1 < θi,2 < . . . < θi,di
are thresholds of the expression levels where

instantaneous changes of the parameter constellation can occur; Ms(t), Ws(t)

are matrices of the type n × n and n × m, respectively, and Vs(t) is an n-
vector (all three ones over intervals). The function Q : Rn → Nn

0 implies the
threshold constellation, and S(Q(E)) indicates where in the state space the
system is placed at E, and which matrices and vectors M, W, V have to be
chosen to specify the system such that the given data are approximated best.
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The function S : Nn
0 → N0 must be injective, such that a different triplet

(M ,W,V) is used whenever a threshold is traversed. This piecewise linear
approach provides an approximation of the global nonlinearity of nature.

The system (HE) can indeed be generalized such that the matrices and vec-
tors depend on E; then, the involved parameters are affected, governed and
instantaneously changed via s(t).

The gene-expression levels are compact intervals such that the vectors E are
parallelpipes, all of them lying in a sufficiently large parallelpipe P . Via canon-
ical projections, the thresholds define a partition of P into subparallelpipes
(regimes) P∗,ρ ⊂ P (ρ ∈ {1, 2, . . . , ℓ}), where ℓ := Πn

i=1(di + 1). Let ℓ# > ℓ

be an integer such that the difference ℓ# − ℓ is the number of combinations
where one or more thresholds are included in the possible intervals of ex-
pression. Each such a combination can be identified with another parallelpipe
P∗,ρ ⊂ P (ρ ∈ {ℓ + 1, 2, . . . , ℓ#}) which partially (i.e., in one or several co-
ordinates) consists of intervals between nonneighbouring threshold values or
are placed at the boundary ∂P . We can reduce the number ℓ# by supposing
that all the intervals Ei(t) are shorter than the differences between any two
nonneighbouring thresholds [107,108].

Our understanding of (HE) is in the sense of the placement in the set of
intervals (cf. Section 3) and of an extension of Q when one or more thresholds
are included in the intervals Ei(t). In such a case, this extension can be made
by the arithmetic mean of the corresponding Q values associated with those
intervals between and besides the thresholds which intersect with Ei(t); this
averaging is then followed by a rounding to an integer. Based on this definition
of s(t), we find Ms(t), Ws(t) and Vs(t) (we could also directly use the averaging
technique for these parameters [94]).

For our time-continuous (or -discrete) system, the parameter estimation works
along the following steps [36,94,106]:

(1) estimation of the thresholds θi,j,
(2) calculation of the matrices and vectors, Ms(t), Ws(t) and Vs(t), describing

the system in between the thresholds.

In [36], those thresholds are defined by, e.g., Akaike’s Information Crite-
rion [41] (cf. also [3,4,33,36,67]. Since we are concentrating on the tasks in
continuous optimization, we assume that we already know all the thresholds.

For any given subparallelpipe P∗ := P∗,ρ we have to extract the parametric
unknowns Ms(t), Ws(t) and Vs(t) from given data. In P∗, the hybrid system
(HE) reduces to a system of ordinary linear differential equations. Hence, we
can find analytical solutions for the corresponding parts of the state space. We
may assume that for the special environmental factors the times of sampling

19



are just the genetic sampling times, and the same index sets of samplings. The

environmental data Ě
(κ)

(κ = 0, 1, . . . , l − 1) are considered to be binary and
constant, but they could also be variable in a more refined modeling.

6.1.2 Mixed-Integer Parameter Estimation

Minimization of the quadratic error between the difference quotients Ė
(κα)

and the right-hand side of the differential equations evaluated at the finitely

many measurement intervals E
(κα)

∈ P∗ (α = 0, 1, . . . , l∗ − 1) which are lying
in the regarded regime P∗ takes the following form:

(HLS) min
(m∗

ij
),(w∗

iℓ
),(v∗

i
)

l∗−1∑

α=0

∥∥∥∥M
∗E

(κα)
+ W∗Ě

(κα)
+ V∗ − Ė

(κα)
∥∥∥∥
2

∞

.

As discussed above, parallelpipe expression vectors can affect several neigh-
bouring subparallelpipes P∗, such that we get corresponding problems (HLS).
Criteria on which of them to put special emphasis consist in where the data
vectors as parallelpipes are lying, and on further empirical evidence. In (HLS),
‖·‖

∞
stands for the Chebychev norm of the set inserted, i.e., it is the maximum

norm with respect to the vector-valued functions defined by (independent)
parametrization which we get from the interval-valued entries of M∗, W∗ and

V∗ as well as the ones of the vectors E
(κα)

, Ě
(κα)

and Ė
(κα)

, respectively.
For length measurement we use the Euclidean norm, such that our squared
Chebychev norm is indeed a maximum over sums of squares, but we could
also use the maximum or the sum (l1) vector norm instead of the Euclidean
(l2) one. This reconsideration turns our least-squares or Gaussian approxima-
tion problem of earlier studies (cf., e.g., [106]) to some generalized Chebychev
approximation problem.

The classical “scalar” version of (HLS), i.e., Gaussian approximation, can
be canonically treated by building the partial derivatives with respect to the
unknowns and equating them to 0. Then, one has to solve the resulting nor-
mal equations, which are linear in the unknown parameters m∗

ij, w∗
iℓ and v∗

i ,
e.g., by Gaussian elimination method algorithm. But (HLS) is a generalized
Chebychev approximation problem; since it can equivalently be written as a
semi-infinite optimization problem (cf. [108]), we get access to the applicable
methodology of SIP.

Real-world gene-environment networks are huge, such that for practical rea-
sons we have to rarefy them by diminishing the number of arcs [94,106]. Here,
upper bounds on the outdegrees of nodes are introduced firstly; later on,
these constraints are undergoing a softening by a continuous way of model
improvement. In this section and in Section 7, we shortly recall this process
in our interval-valued generalized Chebychevian way [107]. Firstly, we define
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the Boolean matrices and vectors, X = (χij)i,j=1,...,n, Ξ = (ξiℓ) i=1,...,n
ℓ=1,...,m

and

Z = (ζi)i=1,...,n, representing by the values 1 and 0 whether or not gene j

regulates gene i, environmental item ℓ regulates gene i and the environment
cumulatively regulates gene i.

Hence, the so-called outdegrees
∑n

i=1 χij,
∑n

i=1 ξiℓ and
∑n

i=1 ζi count the num-
bers of genes regulated by gene j, by environmental item ℓ or by the cumulative
environment, respectively. Our network rarefaction by bounding the outde-
grees obeys the principles of least-squares. We also imply any helpful a priori
knowledge into the problem, especially, about degradation rates, and what is
empirically known about the connectedness structure. Often, a lower bound
δi,min on the degradation of gene i is known or there are requests given about
the feasibility of special genetic or metabolic processes [36,106]. Herewith, our
parameter estimation task becomes a (generalized) mixed-integer Chebychev
approximation problem:

(MICP) min
(m∗

ij
),(w∗

iℓ
),(v∗

i
),(χij),(ξiℓ),(ζi)

l∗−1∑

α=0

∥∥∥∥M
∗E

(κα)
+ W∗Ě

(κα)
+ V∗ − Ė

(κα)
∥∥∥∥
2

∞

,

subject to
∑n

i=0 χij ≤ αj (j = 1, 2, . . . , n),
∑n

i=0 ξiℓ ≤ βℓ (ℓ = 1, 2, . . . ,m),
∑n

i=1 ζi ≤ γ,

m∗
ii ≥ δi,min (i = 1, 2, . . . , n).

The loss of the edges amenating at a few genes which are considered to play
a very important role in regulation, i.e., to have very high outdegrees, could
strongly restrict the connectivity of the network. Such a loss can be the re-
sult of perturbations caused by the environment and affecting the problem
(MICP) with its rigid (exclusive) binary constraints. We therefore make them
“softer” (continuous) in the next Section 7.

7 Improved Modeling by GSIP Extension

7.1 The GSIP Extension

Prepared by [94,106–108], we use continuous optimization for a “softening”
of (MICP) by replacing the binary variables χij, ξiℓ and ζi with real vari-
ables pij, qiℓ, ri ∈ [0, 1] which linearly depend on the elements of mij, wiℓ and
vi (also interpretable as probabilities). For the latter ones we assume some
reasonable box constraints. Herewith, the values

∑n
j=1 pij(m

∗
ij),

∑m
i=1 qiℓ(w

∗
iℓ)
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and
∑m

i=1 ri(v
∗
i ) have become interval-valued approximations of the numbers of

genes regulated by gene j, environmental item ℓ and cumulative environment,
respectively. Having solved the continuous optimization problem, we could re-
turn the binary variables and, hence, network rarefaction, by rounding or stay-
ing below some small prescribed values εij, εiℓ, εi ∈ [0, 1), respectively [106].

On the one hand, the environment can affect the connectedness between the
genes or destroy some of the connecting paths but also cycles among the genes
(“knockout”; [32]). On the other hand, an external stimulus may activate a
higher regulation among the genes. For those reasons, the papers [94,106] im-
plied all the possible convex combinations of the environmental effects into
the inequalities about the bounded outdegrees. The set of combined environ-
mental effects is defined as the convex hull of all the vectors w∗

iℓem(i−1)+ℓ and
v∗

i emn+i:

Y (V∗, W∗) := conv
( {

w∗
iℓem(i−1)+ℓ

∣∣∣ i = 1, 2, . . . , n; ℓ = 1, 2, . . . ,m
}

∪
{
v∗

i σi,m+1emn+i

∣∣∣ i = 1, 2, . . . , n
} )

=





∑

i=1,...,n,
ℓ=1,...,m

σiℓw
∗
iℓem(i−1)+ℓ +

∑

i=1,...,n

σi,m+1v
∗
i emn+i

∣∣∣

σiτ ≥ 0 (i = 1, 2, . . . , n; τ = 1, 2, . . . ,m + 1),
∑

i=1,...,n
τ=1,...,m+1

σiτ = 1





,

eη standing for the ηth ((m + 1)n)-dimensional unit vector (0, . . . , 1, . . . , 0)T .
Formally, we can write Y (V∗, W∗) as a parallelpipe [104]. The richness of how
the environment is implied by and employs any given a priori knowledge about
the genes that helps scientists, practitioners and decision makers when deter-
mining and elaborating the rarefied network. Now, we get our (generalized)
relaxed Chebychev approximation problem:

(RCP) min
(m∗

ij
),(w∗

iℓ
),(v∗

i
)

l∗−1∑

α=0

∥∥∥∥M
∗E

(κα)
+ W∗Ě

(κα)
+ V∗ − Ė

(κα)
∥∥∥∥
2

∞

,
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subject to

∑n
i=1 pij(m

∗
ij, y) ≤ αj(y) (y ∈ Y (V∗, W∗)),

∑m
i=1 qiℓ(w

∗
iℓ, y) ≤ βℓ(y) (y ∈ Y (V∗, W∗)),

∑m
i=1 ri(v

∗
i , y) ≤ γ(y) (y ∈ Y (V∗, W∗)),

δi,min ≤ m∗
ii (i = 1, 2, . . . , n),

m∗
ij ≤ m∗

ij ≤ m∗
ij (i, j = 1, 2, . . . , n),

w∗
iℓ ≤ w∗

iℓ ≤ w∗
iℓ (i = 1, 2, . . . , n; ℓ = 1, 2, . . . ,m),

v∗
i ≤ v∗

i ≤ v∗
i (i = 1, 2, . . . , n).

Firstly, we compare m∗
ii and δi,min, then, take the largest of the two values as

a single lower bound instead (δi,min < m∗
ii provided). As given in the objective

function by generalized Chebychev approximation, this uniform interpreta-
tion of the “≤” conditions amounts to the SIP character of (RCP). By the
additional coupling of our inequality constraint set Y (V∗, W∗) with the states
(V∗, W∗), (RCP) even becomes a GSIP problem. In the objective function, the
terms with the κth Chebychev norm ‖·‖

∞
are nonsmooth max-type functions

(κ = 0, 1, . . . , l∗ − 1). By the following standard technique, (RCP) becomes
smoothly modeled. For each max-type function, we introduce a new coordinate
τκ (in addition to the unknowns of (RCP)), considered as a new coordinate
and as a uniform bound for the squared Euclidean norms of the elements in-
side the Chebychev norms. Herewith, we minimize the sum of the bounds. As
new inequalities we just introduce these bounding conditions; we write them
so that the Euclidean norms of all the elements inside the Chebychev norms
have uniformly to stay below the corresponding bounds.

7.2 On GSIP and Structural Stability for Gene-Environment Networks

7.2.1 Introduction

GSIP revisited and applied for our gene-environment network problem (RCP),
reveals the following general program form [79,83,102]:

PGSI(f, h, g, u, v)





minimize f(x) on MGSI [h, g], where

MGSI [h, g] :=
{

x ∈ Rd|hi(x) = 0 (i ∈ I),

gj(x, y) ≥ 0 (y ∈ Y j(x), j ∈ J)
}
,





(A1)
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with finite cardinalities of |I| and |J |, and with sets Y j = Y j(x) defined as
finitely constrained (F) feasible sets. For each x ∈ Rd, we have a representation

Y j(x) = MF [uj(x, ·), vj(x, ·)]

:=
{

y ∈ Rq|uk(x, y) = 0 (k ∈ Kj), vℓ(x, y) ≥ 0 (ℓ ∈ Lj) },





(A2)

with finite sets Kj and Lj. What is more, the model (A1)-(A2) allows equality
constraints on both the upper (x-) level and lower (y-) level representing, e.g.,
further metabolic restrictions, reactions or balance equations [94,106,107]. The
outdegree constraints in (RCP) may be assumed to be of class C2, too. The
bounds guarantee that the feasible set MGSI [h, g] is compact in the projective
sense of the original 2(n2 + mn + n) unknowns (with intervals encoded by
tuples of endpoints), but not in the “height” dimensions of the new coordi-
nates τκ. This noncompactness can be overcome as shown in [98,102]. Here,
the sets Y j(x) are compact indeed, moreover, they fulfill the Linear Indepen-
dence Constraint Qualification (LICQ), an appropriate choice of the overall
box constraints provided. The works [83,94,102,106,108] provide more detailed
discussions and generalizations of GSIP.

7.2.2 Stability Theory

Perturbations of our gene-environment networks, (f, h, g, u, v) 7→ (f̃ , h̃, g̃, ũ, ṽ),
are generated or caused, e.g., as follows [94,106]: (I) Some data may be out-
liers as parallelpipes, in size or position. We can face them by multiplying
some (dampening) factor on the corresponding squared error (e.g., 0.9). (II)
There can be regularly repeated measurement series, where the data of, e.g., a
week, a month, etc., give rise to one optimization problem and network, such
that the data of the following week, month, etc., can be viewed as a “per-
turbed” problem and network. Let us also mention perturbations of data into
other subparallelpipes P∗ [108]. Finally, our entire interval-valued modeling
has been representing perturbations of the form of (III) errors, imprecision
and uncertainty. The so-called strong Whitney topology C2

S [46,51] serves as a
“measure” of perturbations so that asymptotic aspects are taken into account.
For a classification of uncertainty by five types of errors, we refer to [29].

The “genetic (and environmental) fingerprint” of (RCP) is given by all the
lower level sets of its objective function. If the perturbed and the arbitrarily
slightly unperturbed lower level sets are homeomorphic to each other, under
some correspondence between the levels, we call (RCP) structurally stable
[51,53,98,102]. Now, we can carry over and state the Characterization The-
orem on Structural Stability for Gene-Environment Networks from [94,106]
for (RCP) (for details cf. [54,99,100,102]). Our main theorem basically states
that structural stability can just be characterized by two well-known regularity
conditions and a more technical one:
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Characterization Theorem on Structural Stability

for Gene-Environment Networks. [107,108]
The optimization problem PGSI(f, h, g, u, v) on gene-environment networks is
structurally stable, if and only if the following triplet of conditions C1, 2, 3 is
satisfied:

C1. EMFCQ holds for MGSI [h, g].
C2. All the G-O Kuhn-Tucker points x of PGSI(f, h, g, u, v) are (G-O) strongly

stable.
C3. For each two different G-O Kuhn-Tucker points x1 6= x2 of PGSI(f, h, g, u, v)

the corresponding critical values are different (separate), too: f(x1) 6= f(x2).

This theorem helps for a well understanding of the “landscape” of gene-
environment networks, for their perturbational behaviour and for the devel-
opment of numerical procedures. For example, we can consider “mountain
paths” (saddle points) between any two candidate networks being given by
local minimizers of (RCP). All the points around candidate solutions can be
regarded as potential networks which may be obtained after perturbations,
e.g., inward shifts from a genetic or environmental boundary to an interior
position [54,99,100,102]. They may be outcomes of underlying constellations
in the experimental design which may have to be reconstructed, which is an
inverse problem [10].

In terms of testing the goodness of data fitting, the lower level sets can be
interpreted as confidence regions around the parameters estimated. The size
of these regions is basically governed by the steepness of the function around
the solution. In cases where a local or global minimizer is very steep, we can
associate this with stability, whereas flatness is more likely related with insta-
bility [108]. For a better analytical understanding of (RCP) and its solution,
we identify possible pathologies in terms of one or more of the conditions C1, 2, 3

violated.

We point out a relation to conic programming (CP) [64], however, in a GSIP
sense. If in (RCP) all the functions defining the constraints are linear and the
squares on the Chebychev norms deleted, then we obtain such a CP problem.
If we square both the linear constraint functions and the bounds, we arrive at
the special case of CP called conic quadratic programming (CQP) [64,88]. In
CP problems, interior point methods can be introduced and efficiently applied.

In the remainder of this paper, we return to the example for our method which
we introduced in Section 2, located in the environmental part module of our
networks. We shall focus on three environmental items: CO2 emissions and
their reduction, financial means and technological levels. Those emissions have
a strong impact on living conditions, health and biological states, especially,
by global warming caused. In fact, the extension of our example to further
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items of the environment and to genetical information, too, can be provided
and is proposed to the readers.

8 Modeling, Prediction, Control and Games

in CO2 Emission Reduction

8.0.3 Interpretation

The conferences of Rio de Janerio (1992) and Kyoto (1997) demand for new
and important economic instruments which have a focus on environmental
protection in the macro and micro economy. An important economic tool
being part of Kyoto treaty in that area is a Joint Implementation (JI) program,
explicitly mentioned in Kyoto Protocol. This is an international program which
intends to strengthen international cooperations between enterprises in order
to reduce CO2 and further greenhouse gas emissions.

The United Nations, by a headline and just as a first definition, define sus-
tainable development as [95,104]: “Development that meets the needs of the
present without compromising the ability of future generations to meet their
own needs”. In order to support a sustainable development by specific instru-
ments, it is adviced that they are embedded into an (if possible) optimal energy
management. According to JI this means that it must work on the micro level
with minimal costs and it should be protected against misuse on the macro
level. For that reason, the Technology-Emissions-Means model, in short: TEM
model, was developed by Stefan W. Pickl [70], giving the possibility to simulate
such an extraordinary market situation and behaviour. The case of a coopera-
tive economic behaviour including co-funding in joint international projects is
considered (cf. Subsection 8.4), and the mathematical analysis of several trend
scenarios as well. This leads to new results in the area of cooperative time-
discrete dynamic games using discrete optimization techniques and exploiting
the underlying combinatorial structure (cf. Subsection 5.3). The realization of
JI is subject to technical and financial constraints. Specifically, the concept of
JI involves a bilateral or multilateral deal in which countries are facing a high
pollution abatement in countries with lower costs, and receive credit for the
resulting reduction in greenhouse gas emissions.

The reductions in emissions resulting from technical cooperations are recorded
at the Clearing House whose establishment is also a demand of Kyoto Protocol.
The TEM model was developed to capture these constraints in an emprically
practicable way. The kernel of the TEM model represents an underlying cost
game. It can be used to determine feasible sets. This model bases only on
empirical parameters; we can compare them with real-world phenomena. The
associated cost reductions should then be allocated in an optimal way. This
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approach is well integrated into the TEM model as the possibility to regard the
influence of several cost allocations on the feasible set of control parameters.
In the played cost game, a special solution called the τ value which stands for
a rational allocation process is examined [15,91]; it was introduced into CO2

emission control in [70]. The main question is: In which situations can the
τ value be equivalent to the control parameters needed to reach the regions
mentioned in Kyoto Protocol? The results in the area of cooperative dynamical
games can lead to new insights in JI and can support an improvement of such
an important economical management tool [56,57,60,71–73].

The Framework Convention on Climate Change (FCCC) of Kyoto Protocol
demands for reductions in greenhouse gas emissions by the industrialized coun-
tries. On the other hand, developing countries are expanding their energy
consumption, which leads to increased levels of greenhouse gas emissions. The
preparation of an optimal management tool in that field requires the possibility
to identify, assess and compare several technological options. For that reason,
the mathematical TEM model presented was elaborated. According to FCCC,
control parameters were incorporated which have to be determined iteratively,
according to the negotiation process. It is a model which integrates economical
and technical investments in a coupled time-discrete nonlinear (quadratic) sys-
tem of equations. The iterative solution of the TEM model with time-discrete
control variables implied is an approach to successfully overcome the occur-
rence of chaos in the TEM model and, by this, to help decision makers for a
better predictable, more secure future and for a sustainable development [71].

Environmental problems belong to the main challenging problems of the 21st
century. There is a lack of new allocation principles for investments. Several
approaches from game theory concerning this topic may be found. Additionally
to these approaches, the improvement of technical effectivity through cooper-
ation JI is the center of interest. Therefore, the TEM model was developed
giving the possibility to combine both intentions [60].

8.1 Technology-Emissions-Means Model and Games

The TEM model integrates both the simulation of the technical and financial
parameters. It is treated as a time-discrete control problem [60]. It describes
the economical interactions between several actors (countries, or companies,
etc., in general: players in a game) which intend to minimize their emissions,
Ei, caused by technologies, Ti, using financial means, Ei, respectively. The in-
dex i stands for the ith player (i = 1, 2, . . . , N). The players are linked by
technical cooperations and the market, which expresses itself in the nonlinear
time discrete dynamics of the TEM model [60,71,72]. For a transparent repre-
sentation of the relationship between financial means and reduced emissions
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in a JI program, not mixing the indices, we rename the discrete times tk by k

and write them as arguments rather than as indices:

∆Ei(k) =
N∑

j=1

emij(k)Mj(k),

∆Mi(k) = −λiMi(k)(Mi − Mi(k))(Ei(k) + ϕi∆Ei(k)).

Here, ∆Ei(k) := Ei(k +1)−Ei(k) and ∆Mi(k) := Mi(k +1)−Mi(k). Both dif-

ferences can be interpreted as difference quotients Ė
(k)

i and Ṁ
(k)

i , referring to a
constant steplength hk ≡ 1. Furthermore, Mi stands for the upper bounds for
the financial investigations. The first equation describes the time-dependent
behaviour of the emissions reduced so far by each player. These levels Ei

(i = 1, 2, . . . , N) are influenced by financial investigations Mj (j = 1, 2, . . . , N)
which are restricted by the second equation. We understand Ei as the reduced
emissions of actor i in % and Mi as the financial means of actor i. The parame-
ters ϕi are called memory parameters. Thus, the multiplication of ∆Ei with ϕi

can be regarded as a memory effect; this expression stands for the influence of
earlier investments. The first part of the second equation resembles a logistic
difference equation, where the proportional factor λi can be seen as a growth
parameter. Each coefficient emij describes the effect on the emissions of the
ith actor if the jth actor invests one unit of money for his technologies, e.g.,
devices of filters in energy production of consumption. This also shows how
effective technology cooperations are, what is the kernel of the JI program.

In the first equation, the level of the reduced emissions at the kth discrete
time point depends upon the last value plus a market effect. This effect ex-
presses itself in the additive terms which might be negative or positive [2,3]. In
general, Ei > 0 implies that the actors have reached yet the demanded value
Ei = 0 (normalized Kyoto-Level). A value Ei < 0 means that the emissions
are less than the requirements of the treaty. The second equation reveals that
for such a situation the financial means increase, whereas Ei > 0 leads to a
reduction [60,72]: Mi(k+1) = Mi(k)−λiMi(k)(Mi−Mi(k))(Ei(k)+ϕi∆Ei(k)).
The TEM model is a mathematical model which supports the development of a
management tool in the creation of a JI program, which intends to strengthen
technical cooperations in order to fulfill Kyoto Protocol. The different pa-
rameters emij stands for the technical relationships between the actors. Their
economical interpretation can lead to case studies, in which the range of rele-
vant data can be gained. These data sets might be a good basis for the iterative
solution and game theoretic approach [71].
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8.2 Control Theory

The numerical examinations which show that chaotic behaviour can occur,
underline the necessity of a control theoretic approach which is implied by an
additional control term in the second equation of the TEM model:

Ei(k + 1) = Ei(k) +
N∑

j=1

emij(k)Mj(k),

Mi(k + 1) = Mi(k) − λiMi(k)(Mi − Mi(k)) (Ei(k) + ϕi∆Ei(k)) + ui(k),

ui (i = 1, 2, . . . , N) being the control variables. The TEM model is time-
discrete, we start with a special parameter set and observe the resulting dis-
crete orbits. Usually, the actors start with a negative value, i.e., they lie under
the baseline mentioned in Kyoto Protocol. They try to reach a positive value
of Ei. By adding control parameters, we enforce this development using an
additive financial term. Therefore, the control parameters are added into the
second equation. The aim is to reach a state mentioned in the treaty of Ky-
oto by choosing the control parameters such that the emissions of each player
become minimized. The focus lies in the realization of the necessary optimal
control parameters via a played cost game, determined by the way of coop-
eration between the actors [60]. According to Kyoto Protocol, this approach
means that each actor invests additional financial means. There are several
possibilities to solve the problem of controllability. Concentrating on the fea-
sible sets and their properties in the area of convex games, we just refer to
one numerical result showing that it is possible to steer the system into the
fixed points [72].

8.3 Interval-Valued Model Reformulation

The TEM model and its controlled version are time-discrete systems. Aim-
ing at the time-discrete dynamics discussed in Section 5, it can firstly be

structured in the this way: (ET , MT )T (k+1)
= M (k)((ET , MT )T (k)

)(ET , MT )T (k)
.

Having added the control parameter, we obtain:




E

M




(k+1)

= M (k)(




E

M




(k)

)




E

M




(k)

+




0

u(k)


 ,

which we compactly write as

(DE) E
(k+1) = M

(k)
E

(k),
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such that, now, the matrices M(k) incorporate the control variables. In this
extended space notation, the variable E and entire dynamics (DE) could be
enriched by further environmental and, in particular, genetical items and re-
lations. The shift vector (0T , (u(k))T )T can be regarded as parametric and as
a realization of V(E, Ě∨) in the sense of Section 4; then, our stability theory
could be employed. According to how those matrices are adjusted, we arrive
at different behaviours of stability or instability of (DE), in the sense of dy-
namical systems or of parameter estimation. As a dual alternative to that
feedback-like realization by the vector V(E, Ě∨) which becomes incorporated
into the matrix M(k), the control vectors u(k) could also become integrated into
E(k). The time-dependent parameters em

(k)
ij can be treated in similar ways as

the controls.

In our paper, each M(k) is assumed to be an element of a finite set of interval
matrices and the optimized outcome of a time-discretization. With the remain-
ing set of parameters which are not already estimated by GSIP, we represent
and study different managerial and decision scenarios. The aim of the TEM
model is to reduce the CO2 emission of the countries according to the Kyoto
Protocol. This refers to real-world processes with all their uncertainties; how-
ever, until now research with the TEM model has been done with exact data
[60,71–73] only. Hence, the corresponding model and results have been a bit
far from reality with its imprecions, errors, etc.. For example, the budgets Mi

of the countries were regarded as the same for a 10 or 20 years period, while in
reality they vary. Moreover, the two parameters λ (growth) and ϕ (memory),
and the entire effectivity matrix em are hard to quantify by a specific constant
value, and it is uncertain whether the emission levels will be the same as pre-
dicted. For reasons like these, we reconsider the parameters as intervals and,
what is more, the entire TEM model with its variables can be remodelled with
intervals. In this course, also the controls become interval-valued. Then, the
model reflects the reality more widely, and the stability and prediction results
obtained can be expected to be more confidential.

8.4 Further Elements of Games

As observed in [104], firstly, our game theoretical interpretation firstly was a
bit close to the Lotka-Volterra predator-prey equations and Richardson arms
race model, both underlying the uncontrolled TEM model. After insertion
of control variables into the TEM model and optimization of the dynamics
by an object function which represents minimization of a payoff function or
coming closest possible to the goals of Kyoto Protocol, or both, chaotic sys-
tem behaviour and elements of noncooperation or competition turn to the
orchestrated behaviour of cooperation. For such a cooperative behaviour of
Joint Implementation, the core and the τ value by Stef H. Tijs stand in our
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research [13,15,91]. We also mention the related research on cost sharing in a
joint project [92], the P -value for cost sharing in minimum cost spanning tree
situations [14], and our future investigations on an cooperative game theory
generalized in an interval-valued way [104].

9 Conclusion

In this paper, we surveyed the work done by us with our colleages (espe-
cially, [104]) in modeling, optimization, dynamical representation and game
theory about the patterns of genetic and environmental information have been
presented. A special emphasis was was put on the challenge of CO2 emission
control, for which we related our model with a one called TEM. Measure-
ment errors and uncertainties in DNA microarray experiments and environ-
mental observations were taken into account and incorporated. We arrived
at approximation problems of a generalized Chebychevian kind and investi-
gated them by GSIP. For a deep understanding of the topological landscape of
gene-environment networks determined by that optimization, we state a char-
acterization result on structural stability, and we informed about the related
conic quadratic programming. Complementary to our optimization theory, we
gave a stability theory on dynamical systems which supports the prediction
of genetic and environmental levels and the testing of the goodness of data
fitting. We point out that among the important application areas of GSIP
there are heating and cooling problems [75,101,102] indeed, complex ones of
those studied in this paper.

As we learned, environmental data from, e.g., CO2 emission but also global
warming, can be included, aspects of lifestyle and awareness, the sustainable
development of our societies [38], and educational measurements as well. Socio-
econo - environment networks can become an expression of such an extension,
which might be called “soft” today but can be in the range and service of
applied mathematics tomorrow. Recent collections of selected contributions to
“OR for Better Management of Sustaiable Development” are given in [59,76].
The authors tried to give a more theoretical but helpful contribution to a better
understanding of nature and for improvements in health care, medicine, living
conditions, environmental protection and decision making about the future.
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[108] Weber, G.-W., Uğur, Ö., Taylan, P., and Tezel, A., On optimization, dynamics
and uncertainty: a tutorial for gene-environment networks, to appear in the
special issue of Discrete Applied Mathematics Networks in Computational
Biology.

[109] Yager, R.R., and Yagil, E., Fair division under interval uncertainty,
International Journal of Uncertainty, Fuzziness and Knowledge Based Systems
8, 3 (2000) 611-618.

[110] Yagil, G., and Kreinovich, V., On the relation between effector concentration
and the rate of induced enzyme synthesis, Biophysical Journal 11 (1971) 11-27.

[111] Yamamoto, K.R., Steroid receptor regulated transcription of specific genes
and gene networks, Ann. Rev. Genetics 19 (1985) 209-252.

[112] Yılmaz, F.B., A Mathematical Modeling and Approximation of Gene
Expression Patterns by Linear and Quadratic Regulatory Relations and
Analysis of Gene Networks, Institute of Applied Mathematics, METU, MSc
Thesis, 2004.
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